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ABSTRACT 
 
Why is it so hard to talk to a machine? If only we could communicate in a natural 
human language with robots, they would be so much more useful. Having 
machines that can reason spatially and receive and communicate such reasoning 
linguistically will extend their utility in many more scenarios that are dangerous, 
tedious, unhealthy, etc. Scene description, involving linguistic expressions of the 
spatial relationships between image objects, is a major goal of high-level computer 
vision. People have studied spatial relationships for several years. In a series of 
papers, we have introduced the use of histograms of forces to produce evidence for 
the description of relative position of objects in a digital image. There is a 
parameterized family of such histograms, for example, the histogram of constant 
forces (much like the earlier histogram of angles) and the histogram of 
gravitational forces that highlights areas that are close between the two objects. 
Utilizing the fuzzy directional membership information extracted from these 
histograms within fuzzy logic rule-based systems, we have produced high-level 
linguistic descriptions of natural scenes as viewed by an external observer. 
Additionally, we have begun to exploit the theoretical properties of the histograms 
to match images that may be the same scene viewed under different pose 
conditions. In fact, we can even recover estimates of the pose parameters. These 
linguistic descriptions have then been brought into an ego-centered viewpoint for 
application to robotics. We describe three initial activities here: production of 
linguistic scene description from a mobile robot standpoint, spatial language for 
human/robot communication, and understanding of a sketched route map for 
communicating navigation routes to robots. These efforts just scratch the surface 
of the potential applications and we end with future projections. 
 
Keywords: Human/robot interaction, spatial relationships, linguistic scene description, 
force histograms, fuzzy sets, sketch understanding. 
 
 
 
 
 
 



1. INTRODUCTION 
 
Consider the really great computational personalities of science fiction: Robby the 
Robot, HAL, The Terminator, Commander Data, Andrew the Bicentennial Man to 
name but a few. Why can we relate more to them than, say, to the computer on the 
Enterprise or the robot from The Day the Earth Stood Still? Even though R2D2 is 
smarter, C-3PO’s actions are easier to interpret. In our opinion, a large part of the 
reason lies in the (imagined) ability of these machines not only to reason about 
their environment but to discuss this reasoning with humans in a natural language 
or through other human-based media. In this chapter, we discuss efforts at the 
University of Missouri to move towards this goal of efficient linguistic 
communication between a computer (or a robot) and humans. We will not produce 
a survey of all research in this field (and apologize a priori), but provide our 
insights into solutions to particular sub-problems and to speculate on the future 
utility of linguistic communication. 
 
Determination and utilization of spatial relationships among objects in an image 
has been an active area of research for many years [1-11]. In earlier work, Keller 
and Wang [10,12] used a fuzzy rule-base to generate linguistic description of 
relative position between two image objects, and ultimately, to produce a complete 
description of the scene. The fuzzy rule-base received confidence values of the 
four main directional relations (LEFT, ABOVE, RIGHT, BELOW) and 
SURROUND based on the histogram of angles [7,8]. Subsequently, Matsakis et al. 
[11,13] designed a system for spatial relationship estimation through an axiomatic 
framework for functions from which “histograms of forces”  were generated to 
represent relative position between a pair of 2D image objects. By selecting 
particular functions, we can construct various histograms, ranging from the 
histogram of angles to a histogram of gravitational forces (section 2). In [13], we 
utilized the histogram of forces to generate numeric features from multiple force 
histograms that were then used to generate a linguistic description of a scene using 
a fuzzy rule-base. This approach encompassed the earlier paradigm and led to a 
richer language for scene description. Due to the complementary nature of the 
histograms of forces, it was even possible to construct a self-assessment measure 
for each linguistic description between a pair of image objects, as developed in 
section 3. Next, we used the properties of these histograms along with fuzzy 
similarity measures to match scenes while recovering the camera pose parameters 
[14,15] (section 4). We also applied our system for linguistic description 
generation to human-robot communication (section 5) [16-18] and sketched route 
map understanding (section 6) [19, 20], moving from external views of scenes to 
an ego-centered perspective.  
 
 

2. FORCE HISTOGRAMS  
 
The fuzzy relative position between 2D objects is often represented by a histogram 
of angles [7,8,10]. The histogram of angles associated with any pair (A,B) of crisp 
and digitized objects is a function Ang AB  from R into N. For any direction θ, the 
value Ang AB(θ) is the number of pixel pairs (p,q) belonging to A×B such that p is 



in direction θ of q. In [11], Matsakis and Wendling introduced the notion of the 
histogram of forces. It generalizes and supersedes that of the histogram of angles. 
It ensures rapid processing of raster data as well as of vector data, and of crisp 
objects as well as of fuzzy objects. It also offers solid theoretical guarantees, and 
allows explicit accounting of metric information. The histogram of forces 
associated with (A,B) via F, or the F−histogram associated with (A,B), is a function 
FAB from R into R  +. Like Ang AB, this function represents the relative position of A 
with regard to B. For any direction θ, the value FAB(θ) is the total weight of the 
arguments that can be found in order to support the proposition “A is in direction θ 
of B.”  More precisely, it is the scalar resultant of elementary forces. These forces 
are exerted by the A points on those of B, and each tends to move B in direction θ, 
as depicted in figure 1. Actually, the letter F denotes a numerical function. Let r be 
a real. If the elementary forces are in inverse ratio to d 

r, where d represents the 
distance between the points considered, then F is denoted Fr . For instance, the F 
function associated with the universal law of gravitation is F2. The F2  –histogram 
and F0 –histogram (histogram of constant forces) have very different and very 
interesting characteristics. The latter, very similar to the histogram of angles, gives 
a global view of the situation. It considers the closest parts and the farthest parts of 
the objects equally, whereas F2 –histogram focuses on the closest parts. 
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Figure 1.   Force histograms. (a) FAB(θ) is the scalar resultant of forces (black arrows). Each 
one tends to move B in direction θ. (b) The histogram of constant forces associated with 
(A,B). It represents the position of A relative to B. (c) The histogram of gravitational forces 
associated with (A,B). It is another representation of the relative position between A and B. 

The forces can be classified in different types. Consider, for instance, the 
proposition “A is in direction 0 of B”  (which will be read “A is to the RIGHT of B ” ). 
First, the set of directions is divided into four quadrants as shown in figure 2. The 
forces Fr

AB(θ) of the outer quadrants (θ∈[−π,−π/2]∪ [π/2,π]  ) are elements which, 
to various degrees, weaken the proposition “A is to the RIGHT of B” ; the forces of 
the inner quadrants (θ∈[−π/2,0]∪[0,π/2]) are elements which support the 
proposition. Some forces of the third quadrant are used to compensate—as much 
as possible—the contradictory forces of the fourth one. The proportion of these 
compensatory forces is defined by some angle α+. Forces of the second quadrant 
are used in a similar way to compensate the contradictory forces of the first one. 

The amount of these compensatory forces is defined by α− . The remaining forces 
are called the effective forces. A threshold τ divide them into optimal and sub-
optimal components. The optimal components support the idea that A is 
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“perfectly”  to the right of B: whatever their direction, they are regarded as 
horizontal and pointing to the right. The “average”  direction α0 of the effective 
forces is then computed, in conformity with this agreement.  
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Figure 2.   Force typology associated with the proposition “A is to the RIGHT of B.”  

 

 

3.  LINGUISTIC SCENE DESCRIPTION 
 
We produce a linguistic description of the relative position between any 2D 
objects A and B based on the sole primitive directional relationships: “ to the right 
of,”  “above,”  “ to the left of,”  and “below.”  First, eight values are extracted from 
the analysis of each histogram F0

AB and F2
AB relying upon the categories of forces 

described in section 2 (see [13] for a detailed exposition of the feature extraction).  
These values are: ar (RIGHT), br (RIGHT), ar (ABOVE), br (ABOVE), ar (LEFT), br (LEFT), 
ar (BELOW) and br (BELOW). They represent the “opinion”  given by the considered 
histogram. For instance, according to F2

AB, the degree of truth attached to the 
proposition “A is to the right of B”  belongs to the interval [a2 (RIGHT),b2 (RIGHT)]. 
Then, the two opinions—16 values—are combined using a heuristic scheme. We 
work on the principle that F0

AB is never too optimistic, but is often too cautious. 
We attribute the previous drawback to the fact that F0

AB only has a global view of 
the situation, and we correct it considering F2

AB, which focuses on the closest parts 
of the objects. However, just because of this characteristic, F2

AB’s opinion may be 
excessive: sometimes excessively pessimistic, and sometimes excessively 
optimistic. Four numeric and two symbolic features result from the heuristic 
combination. They feed a system of fuzzy rules that finally outputs the expected 
description.  

In [13], we used LADAR (Laser Radar) range images of a power-plant at China 
Lake, CA provided by the Naval Air Warfare Center. They were processed by 

applying first a median filter, and then the pseudo-intensity filter 1/ 1+G  +Gx y
2 2 , 

where Gx and Gy are the Sobel gradient magnitudes in a 3×3 window. Finally, the 
filtered images were segmented and labeled manually. Wang and Keller used the 
same real data to test a fuzzy rule-based approach for linguistic scene description 
[12]. Figure 3 shows a typical LADAR scene after preprocessing, followed by the 
results of segmentation and labeling. 
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Figure 3.  LADAR range image NAWC 20675; (a) after pseudo-intensity filtering, (b) after 
hand-segmentation and labeling. 

As a simple representative example, consider the two configurations in figure 4. 
The resultant linguistic description of part (a) is: “The stackbuilding 1 is perfectly 
to the right of the reference stackbuilding 0, but slightly shifted upward. The 
description is satisfactory.” and “The stackbuilding 2 is perfectly to the right of the 
reference stackbuilding 0. The description is satisfactory.” whereas that of part (b) 
is: “The group 4 of storehouses is loosely above-left of the group of stackbuildings. The 
description is satisfactory.” System details and many other cases are shown in [13]. 
 

  

         (a)         (b) 

Figure 4.  Two configurations from Figure 3. For each image, the reference object is in 
black, and the argument(s) in dark gray. The light gray objects are ignored. 

 
 

4. SCENE MATCHING 
 
In [14,15] we considered the problem of matching two views of the same scene 
from the information contained in the force histograms and LADAR range data. In 
this case, the views were reconstructed so that they were independent of the third 
dimension and the tilt (or declination) of the camera. In other words, the three-
dimensional information contained in the range data was used to determine the 
declination angle, and to transform the segmented scene to a position as viewed 
from above. Matching was then performed by comparing the relationships between 
the objects in the transformed scenes. The force histograms were treated as fuzzy 
sets and similarity measures were employed to determine rotation and scale for 
each object pair match and to provide a ranking of the matches. 
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Figure 5.  These two images are from the same scene shown from two different viewpoints.  

Figure 5 depicts an example of this matching. Only the four labeled objects were 
considered. The shapes of the objects and the distance between a given pair in 
these scenes vary greatly. By “eliminating” the declination, these factors are 
ameliorated. The similarity measures from [15] are shown in Table 1. In that table, 
the symbol a_b corresponds to the force histogram of the object pair (a,b) in the 
top image (rows) and in the bottom image (columns). 
 

TABLE 1 
SIMILARITY MEASURES OF OBJECT PAIRS IN FIGURE 5 

0_1 0_2 0_3 1_2 1_3 2_3

0_1 0.484 0.484 0.925 0.736 0.928 0.363

0_2 0.52 0.525 0.808 0.817 0.824 0.386

0_3 0.457 0.451 0.896 0.689 0.86 0.345

1_2 0.329 0.322 0.699 0.514 0.665 0.255

1_3 0.308 0.3 0.644 0.479 0.613 0.242

2_3 0.733 0.701 0.384 0.491 0.407 0.696  
 
These results are not sufficient to match object pairs, let alone the entire scene. In 
every row, except for 0_3, the highest similarity measure does not correspond to 
the true matching. Thus, it is necessary to use additional information, such as the 
rotational differences and the scaling ratios calculated from the histograms. There 
are 720 possible ways to assign object pair labels between the two images. Using 
all the information available (histogram similarity, recovered rotation angle 
similarity and estimated scale consistency), an overall matching degree is 
computed for each case. The highest degree was found to be the true matching, 
with a value of 0.997. The next closest matching swaps the relationships of objects 
0 and 3, with objects 1 and 3, and only earns a matching degree of 0.976. The high 
value is because objects 0 and 1 are both about the same size and the relationships 
between them and object 3 only differ by a few degrees. Only 8 of the 720 
matching possibilities achieved a matching degree above 0.9. 



5. HUMAN-ROBOT DIALOG 
 
We now move from external views of scenes to an ego-centered perspective. 
People often use spatial relationships in a conversation to describe their 
environment, e.g., “There is a pillar in front of me and a doorway behind it,” and 
to give instructions such as “Go around the pillar and through the doorway.” 
Recent cognitive models suggest that people use these types of relative spatial 
concepts to perform day-to-day navigation tasks and other spatial reasoning 
[21,22], which may explain the importance of spatial language and how it 
developed. We have initiated work, using the histograms of forces, to embed this 
capability into a mobile robot. Ego-centered descriptions are produced based on 
both direct sensor readings [16,17] and on sensor readings integrated over time 
into an occupancy grid map [18]. In figure 6, the robot and six segmented and 
labeled objects extracted from the current state of a sensor-based digital grid map 
are shown for scene 1. The robot heading specified by the arrow from the center 
(looking “towards” object 5). The fuzzy logic system using force histogram inputs 
produces the detailed and high-level descriptions shown in the textbox. The 
linguistic nature of this description could be used as a concise means of 
communication with a person in an interactive fashion. In fact, as demonstrated in [18] 
the robots seem human-like because we can interact with them in the same way we 
would interact with another person. This computation is fast enough on a PC so that it 
can be accomplished in a real-time mode, allowing for interactive conversations. 
 

 
          Scene 1 

 
 
 
 
 
 

Figure 6.  Robot scene 1.  Objects were extracted from an actual robot-sensed grid map and 
the detailed and high-level descriptions were produced by the fuzzy logic system. Robot 
heading is shown by the arrow. 

DETAILED SPATIAL DESCRIPTIONS for 6 
OBJECTS IN SCENE 1: 
Object number 1 is mostly behind me but 
somewhat to the right (the description is 
satisfactory).  The object is very close. 
Object number 2 is behind me (the description is 
satisfactory) The object is very close. 
Object number 3 is to the left of me but extends to 
the rear relative to me (the description is 
satisfactory). The object is very close. 
Object number 4 is mostly to the right of me but 
somewhat forward (the description is satisfactory).  
The object is very close. 
Object number 5 is in front of me  (the description 
is satisfactory). The object is very close. 
Object number 6 is to the left-front of me (the 
description is satisfactory).  The object is close. 
HIGH-LEVEL DESCRIPTION: 

There are objects in front of me and behind me. 
Object number 3 is to the left of me. 
Object number 4 is mostly to the right of me. 



Figure 7 contains a second example of the descriptive power of this robot 
language. The environment is the same as in scene 1 but the robot is headed in a 
different direction. Note in particular that the high-level description is very 
concise. From it, the robot or a person controlling the robot could deduce easily 
that there is an opening to the rear.  
 
 
 
 
 

 
          Scene 2 

 
 
 
Figure 7.  Robot scene 2. The basic scene is the same as in figure 6. The robot heading, and 
hence, the generated detailed and high-level descriptions are different.  

 

Of course, it is difficult to get a real feeling for where the robot is from this 
information alone since the objects can have an arbitrary numeric labeling. Since 
the goal of this particular project is to have the robot interact with a person within 
a given environment over time, some objects in the grid map will always be 
present and could be labeled by the robot or the human. Figure 8 shows an 
example where on one time snapshot, the pillar was identified and labeled by a 
human. On the current frame, the robot sensor-based grid map generates object 3 
that overlaps the pillar object. From a simple algorithm that matches linguistic 
spatial descriptions and the distance values, the final merged explanation equates 
the pillar and object 3. This capability enhances the information content of a two-
way communication. Much more work is needed to allow the robot to perform 
object recognition. Here, though, the advantage is that the environment is 
reasonably stable, and so the number and type of objects can be restricted. 
Additionally, the ability for the human to easily interact with the robot to specify 

DETAILED SPATIAL DESCRIPTIONS for 6 
OBJECTS IN SCENE 2: 
Object number 1 is mostly behind me but 
somewhat to the left (the description is 
satisfactory).  The object is very close. 
Object number 2 is mostly to the left of me but 
extends to the rear relative to me (the description 
is satisfactory).  The object is very close. 
Object number 3 is in front of me but extends to 
the left relative to me (the description is 
satisfactory).  The object is very close. 
Object number 4 is mostly to the right of me but 
somewhat to the rear (the description is 
satisfactory).  The object is very close. 
Object number 5 is mostly to the right of me but 
somewhat forward (the description is 
satisfactory).  The object is very close. 
Object number 6 is mostly in front of me but 
somewhat to the right (the description is 
satisfactory).  The object is close. 
HIGH-LEVEL DESCRIPTION: 
There are objects in front of me, on my rear left 
and on my right. 



names for particular objects lessens the burden on fully autonomous recognition in 
uncertain environments. Recognition is difficult for robots but usually easy for 
humans, so the human provides the difficult recognition for the robot and names 
landmarks that can be used later as references in the dialog.  
 

 
Scene 3 

 
 
 
 
 
Figure 8.  Demonstration of a merged high-level description when a “persistent” object is 
given a label by a human. 

With this spatial information and linguistic descriptions, in [18] a dialog using a 
spatial language was established with the robot. As an example, consider the scene 
in figure 7 for the dialog below. This figure is similar to those shown in [18] and 
utilizes the multimodal robot interface developed at the Naval Research 
Laboratory [23]. The robot responds using synthesized speech output. 
 
User: “How many objects do you see?” 
Robot: “I am sensing 6 objects.”  
User: “What objects do you see?” 
Robot: “There are objects in front of me, on my rear left and on my right.”   
User: “Where is the nearest object on your right?”   
Robot: “Object number 4 is mostly to the right of me but somewhat to the rear. It 

is very close.” 
 
Motion directives can also be given using spatial language, as shown below: 
 
User: “Go to the nearest object in front of you.”  
Robot: “Looking for the nearest object in front of me. 

I found it. Going to the object.” 
 

DETAILED SPATIAL DESCRIPTION FOR 
OBJECT 3: 

Object number 3 is mostly in front of me but 
somewhat to the left (the description is 
satisfactory).  The object is close. 

HIGH-LEVEL DESCRIPTION OF SCENE 3: 

I am surrounded from the rear.  Object number 2 is 
to the left of me.  Object number 3 is mostly in 
front of me. 

DESCRIPTION OF PERSISTENT OBJECT, 
“PILLAR” (AS DEFINED BY USER ON 
EARLIER FRAME): 

The pillar is mostly in front of me but somewhat to 
the left (the description is satisfactory).  It is close. 

MERGED HIGH-LEVEL DESCRIPTION: 

I am surrounded from the rear. Object number 2 is 
to the left of me. The pillar is mostly in front of me 

pillar 



6. SKETCHED ROUTE MAP UNDERSTANDING 
 
When someone invites you to his house and you’re not quite sure where it is, often 
times you ask your friend to draw a map. Certainly these maps are not precise and 
to scale, but if there are sufficient landmarks, we normally don’ t have too much 
trouble navigating to the destination. A human-friendly method to communicate 
qualitative route information to a robot would be the same: hand-drawn route maps 
in which the user sketches an approximate representation of the environment and 
then draws the desired robot path within that scene. The communication media can 
be a PDA, such as a PalmPilot, as in [19,20] and the information extracted from a 
sketch includes spatial information about the map and a qualitative path through 
the indicated landmarks. The stylus interface of the PDA allows the person to 
sketch a map much as he would on paper for a friend. The PDA captures the string 
of (x,y) coordinates sketched on the screen which forms a digital representation 
suitable for processing. This information is used to build a task representation for 
the robot, which operates as a semi-autonomous vehicle. In this approach, all 
information and the resultant representation is based on robot sensing and relative 
instead of absolute position. 
 
Figure 9 displays 3 particular locations on a path that was drawn by a user along 
with the representation of the principle landmarks. The circle around the robot 
symbol delimits the sensed region at each particular instance.  
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Figure 9.  The PDA sketch.  The original sketch with an overlay of the robot’s sensory 
radius for several points along the route.  

In addition to extracting spatial information with respect to the labeled objects as 
before, we also extract the movement of the robot along the sketched path. The 
computation of the robot’s heading provides an instantaneous orientation. 
However, we also want to track the change in orientation over time and compute 
what would correspond to robot commands, e.g., move forward, turn right, make a 
“hard”  left. The turning rate is determined by computing the change in 
instantaneous heading between two adjacent route points and normalizing by the 
distance between the points. A positive rate means a turn to the left, and a negative 
rate means a turn to the right. 
 



In figure 10, the main direction of each object is plotted for the route steps in 
which the object is “in view”; labels of the corresponding directions are displayed 
on the graph to show the symbolic connection. The normalized turning rate that 
tracks the robot movement along the trajectory is also shown. The turning rate, 
although not translated into discrete robot commands, shows the general trend in 
the robot movement along the route and the correlation with relative positions of 
the environment landmarks. At the beginning of the route, when object #1 is 
behind the robot, the robot’s movement is generally straight ahead (slightly to the 
left). When object #3 is in view, the robot turns to the right until the object is 
mostly on the left. When object #4 is in view to the front, the robot turns left and 
stops when object #5 is in front and very close. In this way, we can extract the key 
points along the route where a change in direction is made. 
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Figure 10.  Normalized turning rate of the robot along the sketched route with the 
corresponding discrete main directions of the objects.  

 
7.  THE FUTURE 

 
The ability of interact with computers and particularly with robots in natural 
human ways will make these devices immeasurably more useful. The research 
towards that goal presented in this chapter we think is pretty impressive. But, 
we’ve just scratched the surface and much more work needs to be done to realize 
the goal. Let’s speculate for a while. One of the tools that will make a major 
impact on getting robots to behave in more human-like fashion is recognition 
technology. As defined by L. Zadeh [24], recognition technology refers to current 
or future systems that have the potential to provide a “quantum jump in the 
capabilities of today’s recognition systems.” Zadeh claims that this can occur as a 
result of three converging developments: (a) major advances in sensor technology; 
(b) major advances in sensor data processing technology; and (c) the use of soft 
computing techniques to infer a conclusion from observed data. Exploring new 
soft computing recognition techniques coupled closely with advances in sensors 



and signal/image processing will significantly enhance the ability of robots to 
become increasingly autonomous. Handling the uncertainty and ambiguity in 
object recognition is a requirement to intelligent-like behavior. From the current 
trends, we see this aspect of the bigger problem to steadily improve. 
 
The key ingredient, though, in any application is the ability of the robot or the 
computer system to interact with people. So, what’s coming down the road? In the 
short term, we think that significant advances will be made in fairly (though not 
completely) structured environments. Besides getting better with the 
communication as indicated in this chapter, robots will be able to interpret 
dynamic behavioral commands, such as “Go to the right of object #2,” or 
“Continue moving generally to the south until you pass behind object #3.” Figure 
11 shows some preliminary work using histograms of forces on defining positions 
that could be considered right of, left of, in front of, and behind the three objects in 
scene 4. The vertices of the quadrilaterals mark these potential spots assuming that 
the robot turns toward each object along its main direction. 

 
Scene 4 

 
Figure 11. Robot scene depicting potential places for the robot to move right of, left of, in 
front of, and behind each object. Places were determined by the relative position 
information, and assumes a perspective in which the robot faces the object along its “main 
direction.” 

In the realm of automated surveillance, we see big advances coming in the way of 
temporal processing. For example, systems that can report activities like “Object 1 
is moving mostly north but a little east” or “The car is executing a left turn” are 
being investigated. In this case, we envision systems that can perform such 
analysis based only on the linguistic relative positions of objects on a sequence of 
frames without resorting directly to the image data. These applications will expand 
both in scope and complexity. Full 3-dimensional spatial reasoning is also on the 
horizon. Besides the obvious use in medical and biological imagery, coupling 
(almost) 3-D reasoning to range images will provide better static and temporal 
descriptions of natural scenes. 

DETAILED SPATIAL DESCRIPTIONS for 3 
OBJECTS IN SCENE 4: 

Object number 1 is to the right of me (the 
description is satisfactory).  The object is very 
close. 

Object number 2 is to the left-front of me (the 
description is satisfactory).  The object is 
close. 

Object number 3 is loosely behind-left of me 
(the description is satisfactory).  The object is 
very close. 

1 

2 

3 



 
Down the road a bit, we foresee greater application of robotics to the increasingly 
important task of search and rescue. Here, the environment is very uncertain and 
perhaps dynamically changing. It will be essential for our machines not only to be 
able to react to the environment, but to communicate with people and to receive 
and interpret possibly complicated linguistic commands. Flexibility and robustness 
will be at a premium. Not only research, but intense engineering development will 
be required to make the machines reliable enough to bet human life on. On the 
lighter side, personal assistant robots that can recognize particular people and 
interact with them would be a great benefit to, say, bed-ridden children or adults. 
 
Is the Bicentennial Man on the horizon? Probably not, but the future of linguistic 
human/machine interaction is bright. Let’s communicate. 
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